Skip to contents

Introduction

In the previous tutorial Introduction to MS2extract package, we described in a detailed manner the core functions of the package. If you are starting to use the MS2extract package with this tutorial, we encourage you to take a look at this tutorial first.

Once you are familiar with the core workflow and functions of this package, we can dive into an automated pipeline with the proposed batch_*() functions. If you find that you want to extract many MS/MS spectra at once, you will want to use thesebatch_*() functions

The first three main steps have a separate batch_*() alternative functions; importing mzXML files, extracting MS/MS spectra, and detecting masses. However, exporting your library to a .msp or .mgf file is able to detect if the provided spectra comes from a single or multiple .mzXML/.mzML files, so the same function works in both cases.

Figure 1. Overview of general data processing pipeline to extract MS/MS spectra using the MS2extract package

Figure 1. Overview of general data processing pipeline to extract MS/MS spectra using the MS2extract package

Batch functions

We are familiar with the arguments that the core functions accept, in this section we describe extra arguments that specific batch_*() functions require.

batch_import_mzxml

Similarly to import_mzxml(), we need to provide the compound metadata, with at minimum the compound name, formula, ionization mode, and collision energy. Optionally, but recommended, the region of interest where each compound elute (min_rt and max_rt).

# Select the csv file name and path
batch_file <- system.file("extdata", "batch_read.csv",
  package = "MS2extract"
)
# Read the data frame
batch_data <- read.csv(batch_file)

# File paths for Procyanidin A2 and Rutin
ProcA2_file <- system.file("extdata",
  "ProcyanidinA2_neg_20eV.mzXML",
  package = "MS2extract"
)
Rutin_file <- system.file("extdata",
  "Rutin_neg_20eV.mzXML",
  package = "MS2extract"
)

# Add file path - User should specified the file path -
batch_data$File <- c(ProcA2_file, Rutin_file)

# Checking batch_data data frame
dplyr::glimpse(batch_data)
#> Rows: 2
#> Columns: 7
#> $ Name            <chr> "Procyanidin A2", "Rutin"
#> $ Formula         <chr> "C30H24O12", "C27H30O16"
#> $ Ionization_mode <chr> "Negative", "Negative"
#> $ min_rt          <int> 163, 162
#> $ max_rt          <int> 180, 171
#> $ COLLISIONENERGY <chr> " 20 eV", " 20 eV"
#> $ File            <chr> "/home/runner/work/_temp/Library/MS2extract/extdata/Pr…

The only difference between batch_import_mzxml() and import_mzxml() is that met_metadata can be more than one row. In this example, we are working with two compounds, procyanidin A2 and rutin.

Tip: you can extract multiple compounds from the same .mzXML if they have different precursor ion m/z.

Tip: you can also specify multiple compounds that have the same m/z as long as they have different retention time.

batch_compounds <- batch_import_mzxml(batch_data)
#> 
#> ── Begining batch import ───────────────────────────────────────────────────────
#> 
#> ── -- ──
#> 
#> • Processing: ProcyanidinA2_neg_20eV.mzXML
#> • Found 1 CE value: 20
#> • Remember to match CE velues in spec_metadata when exporting your library
#> • m/z range given 10 ppm: 575.11376 and 575.12526
#> • Compound name: Procyanidin A2_Negative_20
#> 
#> ── -- ──
#> 
#> • Processing: Rutin_neg_20eV.mzXML
#> • Found 1 CE value: 20
#> • Remember to match CE velues in spec_metadata when exporting your library
#> • m/z range given 10 ppm: 609.14002 and 609.15221
#> • Compound name: Rutin_Negative_20
#> 
#> ── End batch import ────────────────────────────────────────────────────────────

The raw mzXML data contains:

  • Procyanidin A2: 24249 ions
  • Rutin: 22096 ions
# Checking dimension by compound
purrr::map(batch_compounds, dim)
#> $`Procyanidin A2_Negative_20`
#> [1] 17829     6
#> 
#> $Rutin_Negative_20
#> [1] 11475     6

batch_extract_MS2()

Now that we have our data in imported, we can proceed to extract the most intense MS/MS scan for each compound. In this case, the batch_extract_MS2() functions do not have extra arguments, although most of the arguments remains fairly similar.

# Use extract batch extract_MS2
batch_extracted <- batch_extract_MS2(batch_compounds,
  verbose = TRUE,
  out_list = FALSE
)
#> Scale for x is already present.
#> Adding another scale for x, which will replace the existing scale.

#> Scale for x is already present.
#> Adding another scale for x, which will replace the existing scale.

By using verbose = TRUE, we can display the MS/MS TIC plot as well the raw MS/MS spectra of the most intense scan for each compound.

batch_detect_mass()

Now that we have the raw MS/MS spectra, we are going to remove background noise based on intensity. batch_detect_mass() has the same arguments than its core analogue.

batch_mass_detected <- batch_detect_mass(batch_extracted, # Compound list
  normalize = TRUE, # Normalize 
  min_int = 1  # 1% minimum intensity
)

purrr::map(batch_mass_detected, dim)
#> $`Procyanidin A2_Negative_20`
#> [1] 38  6
#> 
#> $Rutin_Negative_20
#> [1] 4 6

We see a decrease of number of ions, 38 and 4 ions for procyanidin A2 and rutin, respectively.

Detected MS2 Procyanidin A2
plot_MS2spectra(batch_mass_detected, "Procyanidin A2_Negative_20")

Detected MS2 Rutin
plot_MS2spectra(batch_mass_detected, "Rutin_Negative_20")

write_msp

In contrast with the previous batch functions, write_msp() is able to detect if the user is providing a single or multiple spectra. However, the user needs to provide metadata about each compound to be included in the resulting .msp database.

# Reading batch metadata
metadata_msp_file <- system.file("extdata",
  "batch_msp_metadata.csv",
  package = "MS2extract"
)

metadata_msp <- read.csv(metadata_msp_file)

dplyr::glimpse(metadata_msp)
#> Rows: 2
#> Columns: 8
#> $ NAME            <chr> "Procyanidin A2", "Rutin"
#> $ PRECURSORTYPE   <chr> "[M-H]-", "[M-H]-"
#> $ FORMULA         <chr> "C30H24O12", "C27H30O16"
#> $ INCHIKEY        <chr> "NSEWTSAADLNHNH-LSBOWGMISA-N", "IKGXIBQEEMLURG-NVPNHPE…
#> $ SMILES          <chr> "C1C(C(OC2=C1C(=CC3=C2C4C(C(O3)(OC5=CC(=CC(=C45)O)O)C6…
#> $ IONMODE         <chr> "Negative", "Negative"
#> $ INSTRUMENTTYPE  <chr> "LC-ESI-QTOF", "LC-ESI-QTOF"
#> $ COLLISIONENERGY <chr> "20 eV", "20 eV"

After having the cleaned MS/MS spectra and the compound metadata, we can proceed to export them into a .msp file.

write_msp(
  spec = batch_mass_detected,
  spec_metadata = metadata_msp,
  msp_name = "ProcA2_Rutin_batch.msp"
)

Session info

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] MS2extract_0.99.0
#> 
#> loaded via a namespace (and not attached):
#>   [1] Rdpack_2.6.1                readxl_1.4.3               
#>   [3] rlang_1.1.4                 magrittr_2.0.3             
#>   [5] clue_0.3-65                 matrixStats_1.4.1          
#>   [7] compiler_4.4.1              systemfonts_1.1.0          
#>   [9] vctrs_0.6.5                 reshape2_1.4.4             
#>  [11] stringr_1.5.1               ProtGenerics_1.36.0        
#>  [13] pkgconfig_2.0.3             crayon_1.5.3               
#>  [15] fastmap_1.2.0               backports_1.5.0            
#>  [17] XVector_0.44.0              labeling_0.4.3             
#>  [19] utf8_1.2.4                  rmarkdown_2.28             
#>  [21] tzdb_0.4.0                  UCSC.utils_1.0.0           
#>  [23] preprocessCore_1.66.0       ragg_1.3.3                 
#>  [25] purrr_1.0.2                 xfun_0.48                  
#>  [27] MultiAssayExperiment_1.30.3 zlibbioc_1.50.0            
#>  [29] cachem_1.1.0                GenomeInfoDb_1.40.1        
#>  [31] jsonlite_1.8.9              highr_0.11                 
#>  [33] DelayedArray_0.30.1         BiocParallel_1.38.0        
#>  [35] broom_1.0.7                 parallel_4.4.1             
#>  [37] cluster_2.1.6               R6_2.5.1                   
#>  [39] bslib_0.8.0                 stringi_1.8.4              
#>  [41] limma_3.60.6                car_3.1-3                  
#>  [43] cellranger_1.1.0            GenomicRanges_1.56.2       
#>  [45] jquerylib_0.1.4             iterators_1.0.14           
#>  [47] Rcpp_1.0.13                 SummarizedExperiment_1.34.0
#>  [49] knitr_1.48                  readr_2.1.5                
#>  [51] IRanges_2.38.1              Matrix_1.7-0               
#>  [53] igraph_2.1.1                tidyselect_1.2.1           
#>  [55] abind_1.4-8                 yaml_2.3.10                
#>  [57] doParallel_1.0.17           codetools_0.2-20           
#>  [59] affy_1.82.0                 lattice_0.22-6             
#>  [61] tibble_3.2.1                plyr_1.8.9                 
#>  [63] withr_3.0.1                 Biobase_2.64.0             
#>  [65] evaluate_1.0.1              OrgMassSpecR_0.5-3         
#>  [67] desc_1.4.3                  ggpubr_0.6.0               
#>  [69] pillar_1.9.0                affyio_1.74.0              
#>  [71] BiocManager_1.30.25         carData_3.0-5              
#>  [73] MatrixGenerics_1.16.0       foreach_1.5.2              
#>  [75] stats4_4.4.1                MSnbase_2.30.1             
#>  [77] MALDIquant_1.22.3           ncdf4_1.23                 
#>  [79] generics_0.1.3              hms_1.1.3                  
#>  [81] S4Vectors_0.42.1            ggplot2_3.5.1              
#>  [83] munsell_0.5.1               scales_1.3.0               
#>  [85] glue_1.8.0                  lazyeval_0.2.2             
#>  [87] tools_4.4.1                 mzID_1.42.0                
#>  [89] QFeatures_1.14.2            vsn_3.72.0                 
#>  [91] mzR_2.38.0                  ggsignif_0.6.4             
#>  [93] fs_1.6.4                    XML_3.99-0.17              
#>  [95] cowplot_1.1.3               grid_4.4.1                 
#>  [97] impute_1.78.0               tidyr_1.3.1                
#>  [99] rbibutils_2.3               MsCoreUtils_1.16.1         
#> [101] colorspace_2.1-1            GenomeInfoDbData_1.2.12    
#> [103] PSMatch_1.8.0               Formula_1.2-5              
#> [105] cli_3.6.3                   textshaping_0.4.0          
#> [107] fansi_1.0.6                 S4Arrays_1.4.1             
#> [109] dplyr_1.1.4                 AnnotationFilter_1.28.0    
#> [111] pcaMethods_1.96.0           gtable_0.3.5               
#> [113] rstatix_0.7.2               sass_0.4.9                 
#> [115] digest_0.6.37               BiocGenerics_0.50.0        
#> [117] ggrepel_0.9.6               SparseArray_1.4.8          
#> [119] farver_2.1.2                htmlwidgets_1.6.4          
#> [121] htmltools_0.5.8.1           pkgdown_2.1.1              
#> [123] lifecycle_1.0.4             httr_1.4.7                 
#> [125] Rdisop_1.64.0               statmod_1.5.0              
#> [127] MASS_7.3-60.2